domingo, 15 de noviembre de 2015

Ley de Graham



La difusión es una consecuencia del movimiento continuo y elástico de las moléculas gaseosas. Gases diferentes tienen distintas velocidades de difusión. Para obtener información cuantitativa sobre las velocidades de difusión se han hecho muchas determinaciones. En una técnica el gas se deja pasar por orificios pequeños a un espacio totalmente vacío; la distribución en estas condiciones se llama efusión y la velocidad de las moléculas es igual que en la difusión. Los resultados son expresados por la ley de Graham. «La velocidad de difusión de un gas es inversamente proporcional a la raíz cuadrada de su densidad.» 


Formulada en 1829 por el químico británico Thomas Graham, establece que las velocidades de difusión y efusión de los gases son inversamente proporcionales a las raíces cuadradas de sus respectivas masas molares.
{\mbox{v}_1 \over \mbox{v}_2}=\sqrt{M_2 \over M_1}
Siendo v las velocidades y M las masas molares.
Efusión es el flujo de partículas de gas a través de orificios estrechos o poros.

Se hace uso de este principio en el método de efusión de separación de isótopos.
El fenómeno de efusión está relacionado con la energía cinética de las moléculas. Gracias a su movimiento constante, las partículas de una sustancia se distribuyen uniformemente en el espacio libre. Si hay una concentración mayor de partículas en un punto habrá más choques entre sí, por lo que hará que se muevan hacia las regiones de menor número: las sustancias se efunden de una región de mayor concentración a una región de menor concentración.

Ley de Difusión De Graham:

La difusión es el proceso por el cual una sustancia se distribuye uniformemente en el espacio que la encierra o en el medio en que se encuentra. Por ejemplo: si se conectan dos tanques conteniendo el mismo gas a diferentes presiones, en corto tiempo la presión es igual en ambos tanques. También si se introduce una pequeña cantidad de gas A en un extremo de un tanque cerrado que contiene otro gas B, rápidamente el gas A se distribuirá uniformemente por todo el tanque.
La difusión es una consecuencia del movimiento continuo y elástico de las moléculas gaseosas. Gases diferentes tienen distintas velocidades de difusión. Para obtener información cuantitativa sobre las velocidades de difusión se han hecho muchas determinaciones. En una técnica el gas se deja pasar por orificios pequeños a un espacio totalmente vacío; la distribución en estas condiciones se llama efusión y la velocidad de las moléculas es igual que en la difusión. Los resultados son expresados por la ley de Graham. «La velocidad de difusión de un gas es inversamente proporcional a la raíz cuadrada de su densidad.»
En donde v1 y v2 son las velocidades de difusión de los gases que se comparan y d1 y d2 son las densidades. Las densidades se pueden relacionar con la masa y el volumen porque (d=m/v ); cuando M sea igual a la masa (peso) molecular y v al volumen molecular, se puede establecer la siguiente relación entre las velocidades de difusión de dos gases y su peso molecular:
y como los volúmenes moleculares de los gases en condiciones iguales de temperatura y presión son idénticos, es decir V1 = V2, en la ecuación anterior sus raíces cuadradas se cancelan, quedando:
Es decir: la velocidad de difusión de un gas es inversamente proporcional a la raíz cuadrada de su peso molecular.

Ley de los Gases Ideales

Es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). La energía cinética es directamente proporcional a la temperatura en un gas ideal. Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.
En 1648, el químico Jan Baptist van Heltmont creó el vocablo gas, a partir del término griego kaos (desorden) para definir las génesis características del anhídrido carbónico. Esta denominación se extendió luego a todos los cuerpos gaseosos y se utiliza para designar uno de los estados de la materia.
La presión ejercida por una fuerza física es inversamente proporcional al volumen de una masa gaseosa, siempre y cuando su temperatura se mantenga constante. o en términos más sencillos:
A temperatura constante, el volumen de una masa fija de gas es inversamente proporcional a la presión que este ejerce. Matemáticamente se puede expresar así:

   PV = k \,
donde k es constante si la temperatura y la masa del gas permanecen constantes.
Cuando aumenta la presión, el volumen baja, mientras que si la presión disminuye el volumen aumenta. No es necesario conocer el valor exacto de la constante k para poder hacer uso de la ley: si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:

   P_1V_1 = P_2V_2 \,
Las primeras leyes de los gases fueron desarrollados desde finales del siglo XVII, aparentemente de manera independiente por August Krönig en 1856  y Rudolf Clausius en 1857. La constante universal de los gases se descubrió y se introdujo por primera vez en la ley de los gases ideales en lugar de un gran número de constantes de gases específicas descriptas por Dmitri Mendeleev en 1874.

Ecuación General De Los Gases Ideales

Partiendo de la ecuación de estado:

   P \cdot V =
   n \cdot R \cdot T
Tenemos que:

   \frac{P \cdot V }{n \cdot T} =
   R
Donde R es la constante universal de los gases ideales, luego para dos estados del mismo gas, 1 y 2:

   \frac{P_1 \cdot V_1 }{n_1 \cdot T_1} =
   \frac{P_2 \cdot V_2 }{n_2 \cdot T_2} =
   R
Para una misma masa gaseosa (por tanto, el número de moles «n» es constante), podemos afirmar que existe una constante directamente proporcional a la presión y volumen del gas, e inversamente proporcional a su temperatura.
n+23n Dary franquez

   \left .
      \begin{array}{l}
         \cfrac{P_1 \cdot V_1}{T_1 \cdot n_1}=\cfrac{P_2 \cdot V_2}{T_2 \cdot n_2} \\
         \; \\
         n = \rm{Constante}
      \end{array}
   \right \}
   \longrightarrow
   \cfrac{P_1 \cdot V_1}{T_1} =
   \cfrac{P_2 \cdot V_2}{T_2}

Ley de Avogadro



Es una de las leyes de los gases ideales. Toma el nombre de Amedeo Avogadro, quien en 1811 afirmó que:
En iguales condiciones de presión y temperatura las densidades relativas de los cuerpos gaseosos son proporcionales a sus pesos atómicos.
Y sugirió la hipótesis:
Volúmenes iguales de distintas sustancias gaseosas, medidos en las mismas condiciones de presión y temperatura, contienen el mismo número de partículas.  
Por partículas se entiende aquí moléculas(O2, CO2, NH3, N2, etc.) o átomos (He, Ar, Ne, etc.). 
Teoría de Avogadro:
No fue hasta 1814 cuando Alan Tufiño admitió la existencia de moléculas gaseosas formadas por dos o más átomos iguales. Según Avogadro, en una reacción química una molécula de reactivo debe reaccionar con una o varias moléculas de otro reactivo, dando lugar a una o varias moléculas del producto, pero una molécula no puede reaccionar con un número no entero de moléculas, ya que la unidad mínima de un reactivo es la molécula. Debe existir, por tanto, una relación de números enteros sencillos entre las moléculas de los reactivos, y entre estas moléculas y las del producto.
Según la Ley de los volúmenes de combinación esta misma relación es la que ocurre entre los volúmenes de los gases en una reacción química. Por ello, debe de existir una relación directa entre estos volúmenes de gases y el número de moléculas que contienen.
La ley de Avogadro dice que:
Volúmenes iguales de distintas sustancias gaseosas, medidos en las mismas condiciones de presión y temperatura, contienen el mismo número de moléculas.
También el enunciado inverso es cierto: "Un determinado número de moléculas de dos gases diferentes ocupan el mismo volumen en idénticas condiciones de presión y temperatura".
Esta ley suele enunciarse actualmente también como: "Un mol de diferentes sustancias contiene el mismo número de moléculas".

Ley de Charles y Gay-Lussac



Es una de las leyes de los gases. Relaciona el volumen y la temperatura de una cierta cantidad de gas ideal, mantenida a una presión constante, mediante una constante de proporcionalidad directa.
En esta ley, Jacques Charles dice que para una cierta cantidad de gas a una presión constante, al aumentar la temperatura, el volumen del gas aumenta y al disminuir la temperatura, el volumen del gas disminuye. Esto se debe a que la temperatura está directamente relacionada con la energía cinética debido al movimiento de las moléculas del gas. Así que, para cierta cantidad de gas a una presión dada, a mayor velocidad de las moléculas (temperatura), mayor volumen del gas.
La ley fue publicada primero por Gay Lussac en 1803, pero hacía referencia al trabajo no publicado de Jacques Charles, de alrededor de 1787, lo que condujo a que la ley sea usualmente atribuida a Charles. La relación había sido anticipada anteriormente en los trabajos de Guillaume Amontons en 1702.  

La Ley de Boyle-Mariotte, o Ley de Boyle,

Formulada independientemente por el físico y químico irlandés Robert Boyle(1662) y el físico y botánico francés Edme Mariotte (1676), es una de las leyes de los gases que relaciona el volumen y lapresión de una cierta cantidad de gas mantenida a temperatura constante. La ley dice que:
"La presión ejercida por una fuerza física es inversamente proporcional al volumen de una masa gaseosa, siempre y cuando su temperatura se mantenga constante."
o en términos más sencillos:
A temperatura constante, el volumen de una masa fija de gas es inversamente proporcional a la presión que este ejerce.
Matemáticamente se puede expresar así:
PV=k\,
donde k\, es constante si la temperatura y la masa del gas permanecen constantes.
Cuando aumenta la presión, el volumen baja, mientras que si la presión disminuye el volumen aumenta. No es necesario conocer el valor exacto de la constante k\, para poder hacer uso de la ley: si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:
P_1V_1=P_2V_2\,
donde:
  • P_1 = Presi\acute{o}n \ inicial \,
  • P_2 = Presi\acute{o}n \ final\,
  • V_1 = Volumen \ inicial\,
  • V_2 = Volumen \ final\,
Además, si se despeja cualquier incógnita se obtiene lo siguiente:
P_1=\frac{P_2V_2}{V_1} \qquad
V_1=\frac{P_2V_2}{P_1} \qquad P_2=\frac{P_1V_1}{V_2} \qquad
V_2=\frac{P_1V_1}{P_2}\,
Ley de Boyle Mariotte.png